RADIATION OF DIFFUSE ISOTHERMAL CAVITIES

G. K. Kholopov UDC 536.3

General equations are derived for the emissivity distribution over the surface, the angular
characteristic of the emissivity, and the hemispherical emissivity of diffuse isothermal
cavities.

Uniformly heated diffuse cavities are widely used as radiation sources approximating absolute black-
bodies. Accordingly, there is interest in such characteristics of the cavities as the emissivity distribu-
tion over the surface, the angular characteristic of the emissivity, the hemispherical emissivity, etc.
Below we derive general equations for engineering calculations of these characteristics, and we give equa-
tions for the surface emissivity of several widely used cavities.

To calculate the distribution of the emissivity over the surface of the cavity we use the procedure
used in [1] for the case of the hemispherical emissivity. We assume that a radiative flux F(o) is incident
on the cavity at some point 0. Then the flux emitted from the cavity as a result of multiple reflections can
be written as

)
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Since there is no absorption in the cavity in the case p = 1, all the radiation entering the cavity must exit
through its aperture; i.e., we would have Femi(0) = F(o). Accordingly, the series
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converges and has the finite sum

glun(a) =1. 3)

To simplify the problem we assume that series (2) converges according to a geometric progression,
i.e., that for all n we can write

(4)
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and
3 1,(6) = o)i(1 — ). )
n==1

This simplification does not introducean error unacceptable for engineering calculations. From (3) and (5)
we find

k=1 —ulo). (6)

According to our assumption, the series in (1) also turns out to be a geometric progression. Re-
placing uy (o) by ug, we write the emissivity of point ¢ of the cavity according to Kirchhoff's law:

__I_Ferni(ﬁ):_ 1—p e (7)

T TR T—p(—n) ed(l—e)u,

Using the concept of vector solid angle, which is common in photometry [2], we can write the angu-
lar coefficient ug as (Fig. 1)
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Treating Eq. (7) as a first approximation in solving the in-
tegral equation for the emissivity of an arbitrary cavity,

S' 6, dQ,(s) )]
n

g,=¢-+ (1 —¢) "
&}
we find in the second approximation

6= g 4 _8)2[ U (l —u,) __l_j u dQ (s) ] (10)

e+ (l—e)u, e+ (1—e)u, nJe+{l—eg)u
s

Fig. 1. Cavity of arbitrary shape. Equation (10) is more accurate than Eq. (7).

Knowing the distribution of the emissivity over the cavity
surface we can calculate the emission characteristic of the cav-
ity. TFor this purpose we must average the emissivity over those parts of the surface which are observed
through the cavity aperture from a given direction:

He (%, y, 2)dEdn
o, ¥) = 03 .
e (g, %) “dgdn

(t)

The coordinates of the point o(x, y, z) onto which 2 point having coordinates (¢, 1) in the plane of the aper-
ture is projected from this direction are found by solving the equations (Fig. 2)

d(x, y. 2y =0,
(x—&) -+ (y —nP= 22 tg?X,

y—n=@x—0ftge

11)

12)

where the first function, ®(x, y, z) = 0, describes the surface of the cavity; the second equation describes
a cone whose vertex is at the point (£, n), whose axis is parallel to the 0z axis, and whose vertex half-
angle is y; and the third equation describes a plane passing through the point (¢, 1) at an angle ¢ with re-
spect to the x0z plane,

After we determine the characteristic £{@, x) we can integrate it over solid angle to calculate the
hemispherical emissivity e5. However, it is simpler to calculate e, by using the general equation [3}

5 (1— eﬂ) da,. {13)

€y, ==
R

n{l —&)

(s)

Fig. 2. Diagram illustrating the notation of the coor-
dinates on a cavity of arbitrary shape.
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Fig. 3. Emissivity of the lateral surface of cylindrical cavities of
various depths L as a function of I, calculated from Eqgs. (7) and (10).
a) p = 0.1; b) 0.5; c¢) 0.9. The cavity depths L corresponding to the
curves calculated from (10) are governed by the values of I at which
the given curves are cut off (. = 0.5, 1, 2, 4, 6, 8, and 10, respec~
tively). The dashed curves are calculated from Eq. (7) and the solid
curves from Eq. (10).

Fig. 4. Emissivity of cylindrical cavities of various depths L as a
function of the angle x (degrees) fromthe cylinderaxis. p = 0.7.

Substituting the value of gy from (7) into this equation and using S ugdAg = A, for the case of a flat aper-

ture [1], we find )

1 j‘ u2dA, (14)

g =1—— .
. A Q) eI —e)l + 1,

s)
Equation (14) appears to be different in form from the equation derived in {1] on the basis of similar
assumptions,
= . : (15)

e+ (1 —e)/A,)| uzda,
s)

where the quantity (1/A) j udeA(I is the average angular coefficient for the entire cavity, but we should
(s) .

not expect large numerical differences between the results found from the two equations.

Substituting the more accurate values of &g given by (10) into (13), we find

o1 ” u dQ.(s) dA, ] (16)
Fh = 8 1 “:_ . .
[ nA, J.Je/(l—e)-tu,

s)
Table 1 and Figs. 3 and 4 show the calculated emissivity of a cylindrical cavity having a flat bottom
and a depth L, obtained for points on the bottom a distance r from the center of the bottom and for points
of the cylindrical surface at a distance I from the open end of the cylinder (all dimensions are divided by
the radius of the cylinder; i.e., this radius is set equal tol). Table 1 shows the emissivity of the center
of the bottom, &r=, that for points on the bottom near the lateral surface, €y =1, the average emissivity
of the bottom, Er, and the value of €, as functions of L for the case € = p = 0.5, We see that Egs. (10) and
(14) yield results which are very nearly equal to the data of [3], obtained by solving integral equation (9)
on a computer by the method of successive approximations without any assumptions. Although the results
found from Eq. (7) are slightly less accurate, they differ much less from the exact values than do the re-
sults calculated from the Gouffe [4] and Buckley [6] equations and are suitable for practical estimates of
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the emissivity. Figure 3 shows the emissivity of the cylindrical surface of cavities of various depths L
as a function of I for three values of p. We see that the discrepancy between the results calculated from
Egs. (7) and (10) is greatest for points on the lateral surface near the bottom of the cylinder. This dis~
crepancy decreases with decreasing p. TFigure 4 shows the emissivity characteristics of cylindrical
cavities in the case p~= 0.7. Equation (7) was used to calculate these characteristics. We see that the
emissivity increases primarily only in directions near the axis of the cylinder with increasing cavity depth
L.

We turn now to some equations which can be used to calculate the angular coefficients of several of
the cavities which are most commonly used in practice. These solutions were obtained on the basis of the
theory of a radiation field [2]. The angular coefficient was found as the ratio of the illumination produced
at a given point by the glowing surface of an aperture having a uniform luminosity to the magnitude of this
luminosity. Multiplying the numerator and denominator in (8) by the brightness attributed to the aperture,
we find

B0 _ Ef0) _ £,(0)cos8, a7
° nB, R, R, ‘

1. A circular cylinder open at one end; the notation and the results for this case are given above,

For points on the bottom of the cavity we have

1 ! (18)
ty = [— 21 - AV (=1 407

For an axial element of the bottom of the cavity we have r = 0, so that we can write

oo = (L2 4+ 1) (19)
and
e+ (20)
T Tere 1

The average value of u,. for the entire bottom is )
— — 21
=1 — (LT E— 1), (
For points on the cylindrical surface,

1 (12»;2 _) 2 (22)

= [l = =
Y WWETd ) Tlernr s oVETa
If the cylinder is open at both ends (a circular aperture),
17 242 (L—D*+2 ' (23)
U= — = + 5 —L|.
2 |\VE+4 VYL —I1F-4

2. A rectangular recess of infinite length and a half-width of 1.

For the lateral faces of the recess, we have
1 -
=1 —VE+4), (24)

where ! is the distance from the edge of the recess into its interior along a face.

For the bottom of the recess we have

I ~l_ Ltr Ny | —r ]
"2 [V(l*.r)%L2 CYU—rrrLr) (25)

3. A truncated cone with an open smaller base, whose radius is set equal to 1:
g V4l +1Isinf) + & —2sinp—/ (26)
" OIVEQ - Isinp) + B+ 4(1 4+ Lsinp) + 2

Here the distance I is measured from the aperture along the generatrix.

4. A cone with an open base of unit radius:
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(I is the distance from the base fo the vertex of the cone along a generatrix, whose length is L).

u,=

5. A wedge-shaped recess of infinite length, whose half~width is set equal to 1:

1 Li—2
1=
K 2[ 1'L2(l’+4)——4Ll]’ (28)

where the distance ! is measured from the rim of the recess to its edge along the face whose width is L.
6. A sphere with a circular aperture.

The angular coefficients (and thus the emissivity) are the same for all points of the sphere, given

by
T 29
u:sin2—f—:%(1¢]/1_vz), 29)

Here the minus sign is used if the part of the spherical surface replaced by the aperture is smaller than a
hemisphere (6 < 1/2), and the plus sign is used in the opposite case 6 > 7/2).

7. A cylindrical recess of infinite length (a circular tube with a slit along its entire length):

4, = sin S an® [(as b, (30)
4 2 2
The average angular coefficient for the entire slit is, for the direction g,
—§
ty = {40) sin® —z—cosq; (113 <% T 5 ) . (31)

Some of these equations can be used to determine the angular coefficients for cavities of several
other shapes. For example, Eq. (18) also holds for points on the flat base (or bottom) of a truncated cone,
regardless of its dimensions, and Eq. (25) can be used for points on the bottom of a trapezoidal recess.

We note in conclusion that by using the general equations and method for calculating the angular co-
efficients outlined above we can determine the emission characteristics of diffuse isothermal cavities of
essentially any shape.

NOTATION

A is the area of the aperture in the cavity;

Ag is the surface area of the cavity walls;

B, is the brightness attributed to the surface of the cavity in the aperture;

Eg(0) is the direct illumination at point s due to the glowing aperture surface;

& g(0) is the magnitude of the light vector at point s;

k ‘is the index of the geometric progression in the series constructed from the sequence
of angular coefficients;

L is the parameter characterizing the cavity depth;

1 is the coordinate measured from the aperture, giving the position of the point under
consideration on the lateral surface of the cavity;

r is the coordinate giving the position of the point on the bottom (or base) of the cavity,
measured from the center of the cavity (the symmetry axis or the center);

Ry is the luminosity attributed to the cavity surface;

S is an arbifrary poinf on a cavity wall;

up(s) is the angular coefficient of the n—th reflection for surface-area element dAg, which
includes the point s;

ug = uy(s) is the angular coefficient for single (or first) reflection, equal to the fraction of the
radiative flux emitted from a cavity after its first reflection from element dAg;

X, Yy, Z are the Cartesian coordinates whose x0y plane is in the aperture plane and whose 0z
axis is perpendicular to this plane, directed into the interior of the cavity;

o is the central angle, measured from the symmetry plane of a cylindrical recess (half

the angle 6) along the side of the slit to the given point on the surface of the recess;
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B is the angle between the axis and the generatrix of a conical cavity;

Y is the ratio of the aperture radius to the radius of a spherical cavity;

) is the angle at which diametrically opposite points of the cavity aperture {(or the edge
of a slit in a recess) are visible from the center of a spherical cavity (or from the
axis of a cylindrical recess);

g=1=-p is the emissivity of the material of the cavity walls;

Eg is the emissivity of a surface element dAg;

e(w, X) is the emissivity, averaged over the aperture surface, in the direction specified by
the angles ¢ and y;

&h is the hemispherical emissivity of the cavity aperture;

8§ is the angle between the axis of the solid angle dwg(0) and the normal to the surface
at point s;

N is the angle between the direction of the light vector, determined by the bright aper-
ture, and the normal to the surface at point s; )

Eand q are the coordinates of an arbitrary point in the plane of the aperture and within its
boundary; _

P is the reflection coefficient of the material of the cavity walls;

o is the given point on the surface of the cavity walls;

@ is the angle between the x0z plane and the plane passing through the 0z axis and the
given observation direction;

X is the angle between the observation direction and the 0z axis;

¥ is the dihedral angle with edge at the axis of a cylindrical recess, measured from the
symmetry plane of the recess;

dwg(0) is the solid-angle element subtended by surface-area element dA; in the aperture at
point s;

d2g(0) is the projection of the solid—angle vector dwg(0) onto the normal to the surface at

point s [2].

The symbols | and | denote integrations over the aperture surface and over the surfaces of the cavity
Q] (s

walls, respectively; the right-hand subscripts on w and @ give the point at the vertex of the solid angle;

and the subscripts in parentheses correspond to the surface element inscribed in the given solid angle.
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